欢迎来到亿配芯城! | 免费注册
  • 07
    2024-10

    电源滤波电容如何选取,掌握其精髓与方法

    电源滤波电容如何选取,掌握其精髓与方法,其实也不难。 1理论上理想的电容其阻抗随频率的增加而减少(1/jwc),但由于电容两端引脚的电感效应,这时电容应该看成是一个LC串连谐振电路,自谐振频率即器件的FSR参数,这表示频率大于Fsr(串联谐振频率)值时,电容变成了一个电感(频率超过Fsr电容此时呈感性),如果电容对地滤波,当频率超出Fsr后,对干扰的抑制就大打折扣,所以需要一个较小的电容并联对地,可以想想为什么? 电容器,高频等效模型 原因在于小电容,Fsr值大,对高频信号提供了一个对地通路,

  • 06
    2024-10

    智能化、新能源,未来的汽车将颠覆我们的生活

    无疑,自动驾驶是当前汽车工业未来的重要发展方向之一。随着汽车智能化的高速发展,引擎与变速箱等参数不在是评判一台车是否出色的标准,更多的驾驶辅助系统逐渐成为了人们购车时的参考要素之一。在行业还有这样的一个共识:2020年将是自动驾驶的重要时间节点。当前,随着智能网联汽车技术的积累发展,自动驾驶汽车已逐步走出实验室,逐渐成为我们生活中的一部分。 2018年3月13日,在上海慕尼黑电子展展会之际同期举办了“汽车技术日”活动,各大行业专家、高校教授,以及安富利、博世、意法半导体、美光、高通、索尼、东芝

  • 05
    2024-10

    三个管脚的压电陶瓷片

    01带有三个管脚的压电陶瓷片 带有三个管脚的压电陶瓷片是在原有的压电陶瓷片的基础上专门有一个反馈引脚。它与外部晶体管电路形成自激振荡的模式发出蜂鸣器的 声响。 这种方式比起它激信号来激励压电陶瓷片发生,它可以自动谐振在扬声器的谐振点上,提高的声音的转换效率。 以金属片为地线,输入驱动信号与反馈引脚信号之间的相位关系随着激励信号的频率不同而变化。下图显示了在谐振点附近,反馈信号与输入信号的之间相位关系。 在谐振点时,反馈信号超前90°。因此,大多数给出的三个管脚的压电陶瓷振荡电路都是由电感作为负

  • 04
    2024-10

    基于DSP器件TMS320VC5509A芯片实现SAW RFID系统的设计

    基于声表面波的射频识别是集现代电子学、声学和雷达信号处理的新兴技术成就,是有别于IC芯片识别的另一种新型非接触识别技术,被认为是二十一世纪 有应用潜力的十大技术之一。传统的基于IC标签的RFID系统应用在高温、强电磁干扰的环境中,信息读取存在困难,导致标签失效率高,甚至无法正常工作。由于SAW器件工作在射频波段,无源无线、阅读距离远及环境适应性强,具有ID识别和传感器的双重功能,因此在识别ID的同时获取目标的各种物理指标,如温度、压力及气体浓度等,具有广阔的市场前景。本文设计并利用了声表面波射

  • 03
    2024-10

    从几款实用电路入手,解读实现复杂电子系统低电磁干扰的几种应用场景

    对于汽车、通信以及测试与测量设备等广大系统制造商来说,技术的发展带来了终端功能与性能的大幅提升,其根源在于系统中配备的功能愈加丰富的电子模块。然而功能越丰富,电路就越复杂,不论是新款汽车中装载的中控集成式多媒体系统、高性能音响系统,还是体积越来越小的 5G 通信设备(手机及基站),抑或是要求 越来越高的仪器仪表,对于高 数字和模拟 IC 的要求都愈发严苛,特别是在供电需求方面。 作为任何电子系统设计不可或缺的部分,电源性能的高低对于系统性能的高低有着至关重要的影响。而电磁干扰(EMI)特性则是

  • 02
    2024-10

    信号完整性基础知识中的电容电感技术分析

    4.1 将物理设计转化为电气设计 建模就是将物理设计中线的长、宽、厚和材料特性转化为R,L和C的电气描述形式。 第五章 电容的物理基础 电容器实际上是由两个导体构成的,任何两个导体之间都有一定量的电容。 (该电容量本质上是对两个导体在一定电压下存储电荷能力的度量) 5.1 电容器中的电流流动 如前所述,只有当两个导体之间的电压变化时,才会有电流流经电容器。 流经电容器的电流可表示为: 当 dV/dt 保持不变时,电容量越大,流过电容的电流就越大。在时域中,电容量越大,电容器的阻抗就越小。 电容

  • 01
    2024-10

    AMD第二代Ryzen处理器导入12nm、Zen+架构

    AMD第二代Ryzen处理器导入12nm、Zen+架构

    稍早宣布针对OEM桌机、笔电产品推出Radeon RX 500X系列显示适配器之后,AMD如期宣布推出采用12nm制程、Zen+核心架构设计的第二代Ryzen系列 处理器,首波依然先针对桌机产品需求推出Ryzen 7 2700X、Ryzen 7 2700、Ryzen 5 2600X、Ryzen 5 2600四款处理器,最高采用8核心、16线程设计, 预计将从4月19日起开放销售。 在正式解禁之后,AMD也终于将采用12nm制程、Zen+架构设计的第二代Ryzen系列处理器带到玩家面前,确认推出

  • 30
    2024-09

    台积电第四季7nm营收可占七成

    集微网消息, 台积电预期,今年第4季7nm营收占比可达二成,全年营收占比可达10%,营收与客户规模傲视同业。台积电透露,该公司7nm效能和功耗都优于同业,客户需求超乎预期,这些客户涵盖手机应用处理器、网络处理器、可编程逻辑组件、图形处理器和游戏机特殊应用IC,以及挖矿芯片、人工智能等高速运算芯片。台积电指出,旗下7nm和7nm强化版都照既定的行程推进,其中7nm制程,已有18个客户导入产品设计定案;至于导入极紫外光(EUV)的7nm强化版会于明年量产,全数采用极紫外光的5nm,则会在2020年

  • 29
    2024-09

    人工智能芯片创新企业榜发布 恩智浦位列全球前三

    人工智能芯片创新企业榜发布 恩智浦位列全球前三

    集微网消息,根据信息科技及通讯领域领先的市场调研咨询公司 Compass Intelligence(CompassIntel.com) 近日发布的调研结果,恩智浦半导体被评为全球前三位人工智能(AI)芯片企业之一。此次评选榜单涵盖了全球范围内在移动设备、物联网(IoT)和新兴技术方面最领先的企业。恩智浦与 NVIDIA 和 Intel 一同名列引领 AI 创新的 AI 芯片企业前三位。 恩智浦是全球领先的汽车电子及人工智能物联网芯片公司,以逾 60 年的领先经验与技术不断推动人工智能、物联网、

  • 28
    2024-09

    mos管寄生电容是什么看了就知道

    寄生电容是指电感,电阻,芯片引脚等在高频情况下表现出来的电容特性。实际上,一个电阻等效于一个电容,一个电感,一个电阻的串联,低频情况下表现不明显,而高频情况下,等效值会增大。在计算中我们要考虑进去。 ESL就是等效电感,ESR就是等效电阻。不管是电阻,电容,电感,还是二极管,三极管,MOS管,还有IC,在高频情况下要考虑到等效电容值,电感值。 我们可看做是我们的各个管脚之间都是串接了一个电容在其旁边,如图所示,由于MOS管背部存在寄生电容,这会影响到我们的MOS管的开关断的时间。 故此,如果M

  • 27
    2024-09

    中兴通讯发内部信:坚定信心力争更短时间解决问题!

    近日消息,针对公司被美国商务部制裁一事,中兴通讯发布名为《坚定信心力争更短时间解决问题》的内部员工信。中兴表示,将继续保持与各方紧密沟通,尽最大努力在更短时间内解决问题。 此前据新华社报道,在3日至4日举行的中美经贸磋商中,中方就中兴公司案与美方进行了严正交涉。美方表示,重视中方交涉,将向美总统报告中方立场。 美国商务部在美东时间4月16日宣布,将禁止美国公司向中兴通讯销售零部件、商品、软件和技术7年,直到2025年3月13日。 对此,中兴通讯迅速作出反应,表示坚决反对美国商务部做出这样的决定

  • 26
    2024-09

    半导体元器件容易失效的原因,离不开这五大原因

    伴随着对芯片的使用环境要求的越来越苛刻,在产品的生命周期中还面临很大的挑战,但是随着制造尺寸变小以及采用新的封装技术时,又会有新的影响产生,也就直接导致了器件性能研发的失败。 随着科学技术的发展,尤其是电子技术的更新换代,对电子设备所用的元器件的质量要求越来越高,半导体器件的广泛使用,其寿命经过性能退化,最终导致失效。 有很大一部分的电子元器件在极端温度和恶劣环境下工作,造成不能正常工作,也有很大一部分元器件在研发的时候就止步于实验室和晶圆厂里。除去人为使用不当、浪涌和静电击穿等等都是导致半导